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A theory of attending and reinforcement in conditional discriminations (Nevin, Davison, & Shahan,
2005) is extended to working memory in delayed matching to sample by adding terms for disruption of
attending during the retention interval. Like its predecessor, the theory assumes that reinforcers and
disruptors affect the independent probabilities of attending to sample and comparison stimuli in the
same way as the rate of overt free-operant responding as suggested by Nevin and Grace (2000), and that
attending is translated into discriminative performance by the model of Davison and Nevin (1999). The
theory accounts for the effects of sample-stimulus discriminability and retention-interval disruption on
the levels and slopes of forgetting functions, and for the diverse relations between accuracy and
sensitivity to reinforcement reported in the literature. It also accounts for the effects of reinforcer
probability in multiple schedules on the levels and resistance to change of forgetting functions; for the
effects of reinforcer probabilities signaled within delayed-matching trials; and for the effects of
reinforcer delay, sample duration, and intertrial-interval duration. The model accounts for some data
that have been problematic for previous theories, and makes testably different predictions of the effects
of reinforcer probabilities and disruptors on forgetting functions in multiple schedules and signaled
trials.
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_______________________________________________________________________________

Conditional discriminations arrange that
the stimulus signaling availability of reinforce-
ment for a response depends on the value of
a separate stimulus. For example, in an early
study, Lashley (1938) trained rats in alternat-
ing blocks of trials to jump toward an upright
triangle if the background was black, and
toward an inverted triangle if the background
was striped. In a series of test trials, Lashley
varied the properties of the stimuli and
concluded that choices depended both on
the figure and on the background so that ‘‘a
genuine reversal of the sense of reaction was
determined by the character of the ground’’
(1938, p. 317). In other words, his subjects

attended to both components of the condi-
tional discrimination.

In Lashley’s (1938) work, it is not clear
whether the ground (black versus striped) or
the figure (upright versus inverted triangle)
served as the conditional cue to reverse the
sense of the reaction. The distinction is clear,
however, in the conditional-discrimination
paradigm known as delayed matching to
sample (DMTS). In a standard example,
a pigeon is presented with a red or green
light (the sample) on the center key of a three-
key array for a few seconds. Then, after
a retention interval, red and green lights are
presented on the side keys (the comparisons),
and food reinforcement is contingent on
pecks to the comparison with the same color
as the sample. In this situation, the sample
color can be identified as the conditional cue
determining the ‘‘sense of the reaction’’ to red
or green comparisons on the basis of the
sequential order and temporal separation
between stimulus presentations. In the DMTS
paradigm, it is especially clear that the pigeon
must attend to both samples and comparisons
in order to perform correctly and obtain
reinforcers.
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Nevin, Davison, and Shahan (2005) pro-
posed that attending to the components of
a conditional discrimination could be con-
strued as unmeasured or covert behavior that
was related to reinforcement according to the
same quantitative expression as overt behavior.
They applied their model of attending to
matching-to-sample and signal-detection para-
digms in which conditional stimuli signal
which of two responses (defined either by
separate stimuli or by topography) is correct,
and showed that it gave a good account of data
in situations where aspects of the stimuli and
the conditions of reinforcement were varied
with no temporal separation between condi-
tional stimuli and response opportunities.
Here, we extend the model to short-term
working memory in the DMTS paradigm
where the conditional stimuli and the re-
sponse-defining stimuli are separated by a re-
tention interval.

In general terms, the DMTS paradigm
involves presentation of one or the other of
two sample stimuli (S1 or S2) in discrete trials.
After offset of the sample, a retention interval
of length t seconds intervenes before the
simultaneous presentation of two comparison
stimuli (C1 and C2), one of which is physically
the same as the preceding sample. Choice
responses (B1 and B2) are defined by the
comparison stimuli to which they are directed.
A response to the matching comparison (B1

given S1 or B2 given S2) may be reinforced;
a response to the nonmatching comparison is
not reinforced. In a variant of the paradigm
known as symbolic DMTS (DSMTS), the
physical relations between S1 or S2 and C1

and C2 (or B1 and B2) are arbitrary, but the
same reinforcement contingencies are in
effect. The matrix of stimuli, responses, and
reinforcers is shown in Figure 1, where cells
are denoted by row-column notation. Thus,
R11 refers to reinforcers for B1 on S1 trials (Cell
11), and R22 refers to reinforcers for B2 on S2

trials (Cell 22); no reinforcers are scheduled in
Cells 12 or 21 (errors) in the studies consid-
ered here.

Nevin et al. (2005) assumed that on each
trial, the probabilities of attending to the
samples, p(As), and to the comparisons,
p(Ac), were determined independently by
a function derived from behavioral momen-
tum theory (Nevin & Grace, 2000). Then, the
probabilities of B1 and B2 given S1 or S2 were

determined by the allocation of effective
reinforcers to the cells of the matrix in
Figure 1 as suggested by Davison and Nevin
(1999). To bring the model of Nevin et al. to
bear on DMTS, we make one additional
assumption, namely that attending may be
disrupted by distraction or interference during
retention intervals. We begin by reviewing
behavioral momentum theory and the Davi-
son–Nevin model.

Behavioral Momentum Theory

Nevin and Grace (2000) suggested that the
relation between response rate during short-
term disruption and predisruption baseline
response rate is given by

log
Bx

Bo

� �
~

{x

rs

ra

� �b , ð1Þ

where Bo and Bx are response rates measured
during baseline and disruption, respectively; x
is a dimensionless number representing the
potency of the disruptor, with a negative sign
indicating that the disruptor decreases re-
sponse rate; rs is the reinforcer rate correlated
with the stimulus situation in which respond-
ing is measured; ra is the overall average
reinforcer rate in the experimental setting;
and b is an exponent representing the sensi-
tivity of resistance to change to the reinforcer
ratio. Many studies of resistance to change
have arranged multiple schedules, where rs is
identified with the reinforcer rate in a target
component and ra is the average reinforcer
rate in a session. When variable-interval (VI)

Fig. 1. The matrix of stimuli and responses defined by
a conditional discrimination such as DMTS, where the
samples are S1 or S2, and responses B1 and B2 are defined
by the comparison stimuli C1 and C2. Cells are identified by
row–column notation. Reinforcers for correct responses
are designated R11 and R22; no consequences are arranged
in the error Cells 12 and 21.
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schedules are arranged in both components,
the value of b is usually about 0.5 (Nevin,
2002), and we will use that value in all model
applications below.

Equation 1 can be rewritten to describe the
relation between steady-state response rate and
reinforcer rate. Exponentiating,

Bx ~ Bo exp
{x

rs

ra

� �b

0
BBB@

1
CCCA, ð2Þ

where Bo is now identified with the asymptotic
response rate as rs/ra goes to infinity, and x is
a general background disruptor that keeps
measured response rate from achieving that
asymptote when rs/ra is less than infinity.

Nevin et al. (2005) showed that Equation 2
provides a good description of Shahan’s
(2002) data relating the rate of observing
behavior, which is often construed as an overt
component of attending, to the reinforcer
rate. Therefore, Equation 2 was used to
characterize the probabilities of attending in
the model of Nevin et al., and will be used
similarly here. Specifically, we will assume that

p(As) ~ exp
{x {qt

rs

ra
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and

p(Ac ) ~ exp
{z {vt

rc

rs
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Equation 3 states that the probability of
attending to the samples, p(As), is an in-
creasing function of the reinforcer rate corre-
lated with the samples, rs (i.e., reinforcers per
session divided by the time preceding, during,
and following sample presentation until onset
of the comparisons). Attending to the samples
depends directly on the value of rs relative to
the session average reinforcer rate ra, and
inversely on a general background disruptor x
and a separate disruptor qt that is specific to
the retention interval, where q represents
disruption per unit time and t is the duration

of the retention interval. Similarly, Equation 4
states that the probability of attending to the
comparisons, p(Ac), is an increasing function
of the reinforcer rate correlated with the
comparisons, rc (i.e., reinforcers per session
divided by the time from sample offset to
comparison offset). Attending to the compar-
isons depends directly on the value of rc

relative to the reinforcer rate correlated with
the samples, rs, and inversely on a general
background disruptor z (which may differ
from x) and by a separate disruptor vt, where
v (which may differ from q) represents
disruption per unit time within the retention
interval and t is the duration of the retention
interval. If t 5 0, Equations 3 and 4 are exactly
the same as Equations 5 and 6 in Nevin et al.
(2005), which concentrated on conditional
discriminations with no retention interval.

Calculating Reinforcer Rates

To calculate the reinforcer rates ra, rs, and rc

in Equations 3 and 4, it is necessary to specify
when attending to samples and comparisons is
assumed to occur in order to establish the
appropriate time bases. Figure 2 shows the
sequence of events within a standard DMTS
trial and suggests how the subject’s activities,
measured or unmeasured, are assumed to take
place during a trial. Specifically, we assume that
the subject may orient toward the sample
location or otherwise engage in observing
behavior before sample onset, attend to the
sample while it is present, and then attend to
the ‘‘sample-as-coded’’ for the duration of the
retention interval. Attending to the sample-as-
coded corresponds to the notion of rehearsal in
more cognitive accounts of memory processes,
and may best be conceptualized as attending to
any sample-related behavior, measured or un-
measured, that the subject may emit during the
retention interval. Despite their nominal differ-
ences, all of these activities are summarized by
the term ‘‘attending to the sample’’ and take
a single value of p(As) according to Equation 3.
The time during which the subject is assumed
to engage in sample-related attending is shown
as a dotted line in Figure 2.

The reinforcer rate correlated with attend-
ing to the sample, rs, is given by dividing the
number of reinforcers arranged for correct
responses in an experimental condition by the
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total time during which the subject may orient
toward, observe, or attend to the sample,
including the intertrial interval (ITI), the
sample duration, and the retention interval.
This total time, which is coextensive with p(As),
is indicated by line t(rs) in Figure 2. In the
numerator of Equation 3, t is identified with
the retention interval, which is a part of t(rs) as
shown in Figure 2. The time base for rs is the
same as in Nevin et al. (2005) with the addition
of retention-interval time during which the
subject may attend to the sample-as-coded.

We also assume that the subject may orient
toward the comparison locations or engage in
related observing behavior during the reten-

tion interval and then attend to the compar-
isons while they are present, as indicated by
the dotted line. These activities are summa-
rized by the term ‘‘attending to the compar-
isons’’ and take a single value of p(Ac)
according to Equation 4. Thus, during the
retention interval, the subject is assumed to
engage in two concurrent, independent activ-
ities—colloquially, looking for the compari-
sons while rehearsing the way in which it has
coded the samples—as suggested in Figure 2.

The reinforcer rate correlated with attend-
ing to the comparisons, rc, is given by dividing
the number of reinforcers arranged for correct
responses by the length of the retention

Fig. 2. Time-line diagram of experimentally arranged events within a DMTS trial, and the times during which the
subject is assumed to attend to the sample and comparisons. Times during which reinforcers and disruptors are assumed
to operate on attending to samples or comparisons are also indicated. See text for explanation.
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interval during which the subject may orient
toward or attend to the comparisons plus their
duration indicated by line t(rc) in Figure 2,
which is coextensive with p(Ac). Typically,
comparison stimuli are turned off after a single
response, so we assume 1-s latencies unless
they are reported. The time base for rc is the
same as in Nevin et al. (2005) with the
addition of the retention interval.

The overall average reinforcer rate in
a session, ra, is given by dividing all reinforcers
available for correct responses by session
duration. In Equation 3, rs is divided by ra

because attending to the sample occurs within
the overall session context. Likewise, in Equa-
tion 4, rc is divided by rs because attending to
the comparisons occurs within the context
provided by the samples.

As described above, attending to the sam-
ples may be reduced by general background
disruption x plus disruptors that are specific to
the retention interval, qt. Likewise, attending
to the comparisons may be reduced by general
background disruption z plus disruptors that
are specific to the retention interval, vt.
Figure 2 indicates the times during which
disruptors x, z, and q or v are assumed to
impact p(As) and p(Ac).

To give a sense of how the model operates,
Figure 3 illustrates how model parameters affect
p(As) and p(Ac) in DMTS with representative
experimental parameters: 20-s ITI, 2-s sample
duration,1-s latency to respond to the compar-
isons, and retention intervals ranging from 0 to
10 s, mixed within a condition. (In terms of the
model, an alternative procedure in which the
retention interval is varied between condi-
tions differs only in the calculation of rs.) The
left panel shows that if q 5 0 (i.e., no
interference with attending to the sample-as-
coded during the retention interval), p(As) is
essentially constant over retention intervals,
decreasing slightly because rs decreases as the
retention interval lengthens. Increasing q to
0.3 leads to a steep decline in p(As) as the
retention interval lengthens. The left panel
also shows that the level of p(As) at t 5
0 depends inversely on x. The right panel
shows that if v 5 0 (i.e., no disruption of
observing behavior with respect to the up-
coming comparisons), p(Ac) decreases slightly
more than p(As) when q 5 0 because the
retention interval has a proportionally larger
impact on rc than on rs in Equation 4.

Increasing v to 0.3 leads to a steep decline
in p(Ac) as the retention interval lengthens.
The right panel also shows that the level of
p(Ac) at t 5 0 depends inversely on z. Thus,
p(As) and p(Ac) are similarly affected by
disruptors as suggested by Equations 3 and
4, but note that the level of p(Ac) is less
affected than that of p(As) by the same
changes in x and z. The reason is that rc/rs

in Equation 4 is larger than rs/ra in Equa-
tion 3 unless the ITI is very short. Equations 3
and 4 can simulate a number of basic results
in the DMTS literature with a fixed set of
parameter values when p(As) and p(Ac) are
translated into measured discrimination by the
model of conditional discrimination perfor-
mance proposed by Davison and Nevin (1999).

Discriminability and Choice in DMTS

With reference to the matrix of stimuli,
responses, and reinforcers in Figure 1, Davison
and Nevin (1999) suggested that the effects of
R11 and R22 generalized to the other cells as
a result of confusability (i.e., less-than-perfect
discriminability) between stimulus–behavior
and behavior–reinforcer relations in the dis-
criminated operants S1–B1–R11 and S2–B2–R22.
Their approach identified confusability with
contingent relations between the terms of
discriminated operants, and is complicated by
the fact that changing the physical properties of
C1 and C2, which define B1 and B2, would affect
both stimulus–behavior and behavior–reinforc-
er relations. Here, we simplify the Davison–
Nevin approach by concentrating on stimulus-
specific sources of generalization. We will
designate the discriminability of the samples
S1 and S2 as ds, and the discriminability of the
comparison stimuli C1 and C2 as dc. Both ds and
dc are construed as structural limits on the
subject’s ability to distinguish the relevant
stimuli that depend on its sensory system, the
physical differences between the samples and
the comparisons, and other constant features of
the experimental setting.

Both ds and dc range from infinity, implying
perfect discriminability, to 1.0, implying com-
plete confusability. Discriminability is the in-
verse of confusability, so generalization due to
confusability of the stimuli is given by multiply-
ing scheduled reinforcers by 1/ds for samples
and by 1/dc for comparisons. The resulting
matrix of scheduled and generalized reinforc-
ers that accumulate in the cells of the matrix of
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Figure 1 is shown in Figure 4, where responses
B1 and B2 are defined by the stimuli C1 and C2.
For example, reinforcers in Cell 11 generalize
to Cell 21 to the extent that the samples are
confusable, and therefore the effective rein-
forcers in Cell 21 include those in Cell 11
multiplied by 1/ds. Additionally, reinforcers in
Cell 22 also generalize to Cell 21 to the extent
that the comparisons are confusable, and
therefore the effective reinforcers in Cell 21
include those in Cell 22 multiplied by 1/dc.
Thus, although no reinforcers are scheduled in

Cell 21, the effective number of reinforcers in
Cell 21 is the sum of reinforcers generalized
from Cells 11 and 22.

Davison and Nevin (1999) assumed that
choice between B1 and B2 matched the
effective numbers of reinforcers in Cells 11
and 12 on S1 trials, and in Cells 21 and 22 on
S2 trials. From this assumption, Davison and
Nevin made a number of predictions, a few of
which were not generally supported by data
(those predictions are not altered by shifting
the notation to ds and dc and identifying
these terms with the discriminability of the
samples and comparisons, respectively). Ne-
vin et al. (2005) showed that these discre-
pancies resulted from the implicit assumption
of the Davison–Nevin model that the subject
always attended to the stimuli, and could be
rectified by allowing p(As) and/or p(Ac) to
take values less than 1.0. For example, Nevin
et al. showed that the predicted forms of the
functions relating the log ratio of B1 to B2 on
S1 and S2 trials to the log ratio of R11 to R22

changed substantially when p(As) decreased
from 1.0 to .7. As a result, Nevin et al. were
able to account for several data sets that were
problematic for the original Davison–Nevin
model.

Fig. 4. Effective reinforcer allocation in the cells of the
stimulus–response matrix of Fig. 1. The discriminabilities
of samples and comparisons are characterized as ds and dc,
which may be conceptualized as distances between stimuli.
Generalization between cells results from confusability of
the samples and comparisons, 1/ds and 1/dc.

Fig. 3. Illustrations of the ways in which probabilities of attending to the samples, p(As), and to the comparisons, p(Ac),
depend on the length of the retention interval with several values of the disruptors x, z, q, and v, assuming mixed
retention intervals and representative experimental parameters.
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Structure of the DMTS Model

Because p(As) and p(Ac) can take values less
than 1.0, there are four possible states for the
model, as shown in Figure 5. First, if the subject
attends to the samples and to the comparisons,
its probabilities of responding are given by the
Davison–Nevin (1999) model with values of dsb

and dbr replaced by ds and dc to characterize
discriminabilities of the stimuli. The equations
for calculating p(B1|S1) and p(B1|S2) are given at
the bottom of Figure 5 as State 1, ‘‘Attend to
both’’ [note that p(B2|S1) 5 12 p(B1|S1) and
p(B2|S2) 5 12 p(B1|S2)]. Second, if the subject
attends to the samples but does not attend to
the comparisons, dc is effectively 1.0 so that B1

and B2 are chosen equally often on both S1 and
S2 trials (State 2, ‘‘Attend to samples only’’).
Third, if the subject does not attend to the
samples but does attend to the comparisons, ds

is effectively 1.0 and choice between B1 and B2 is
governed by the values of R11 and R22 as
modulated by dc identically on S1 and S2 trials
(State 3, ‘‘Attend to comparisons only’’).
Fourth, if the subject attends neither to the
samples nor to the comparisons, both ds and dc

are effectively 1.0 and B1 and B2 are chosen
equally often (State 4, ‘‘No attending’’). The
values of p(B1|S1) and p(B1|S2) pooled for a large
number of trials are calculated by multiplying
p(B1|S1) and p(B1|S2) in each of the four states
by the probabilities of entering these four
states, which in turn are given by the values of
p(As) and p(Ac) from Equations 3 and 4. The
pooled values of p(B1|S1) and p(B1|S2) are then
used to predict DMTS performance.

We will predict two measures of perfor-
mance, log d and log b, that have been
employed in many studies of conditional
discrimination performance since their intro-
duction into the experimental analysis of
behavior by Davison and Tustin (1978). Both
measures range from zero to infinity. Log d is
the logarithm of the geometric mean of the
ratios of probabilities of correct to incorrect
responses on S1 and S2 trials, and measures the
accuracy of discrimination, which is given by the
empirical allocation of responses and is not
the same as discriminability, a theoretical term
characterizing the stimuli and the organism’s
sensory system:

log d ~ 0:5 � log
p(B1 j S1) � p(B2 j S2)

p(B2 j S1) � p(B1 j S2)

	 

: ð5Þ

Log b is the logarithm of the geometric mean
of the ratios of probabilities of B1 to B2

responses on S1 and S2 trials and measures
response bias, the tendency to emit B1 rather
than B2:

log b ~ 0:5 � log
p(B1 j S1) � p(B1 j S2)

p(B2 j S1) � p(B2 j S2)

	 

: ð6Þ

It is of special interest to examine the relation
between log b and the ratio of reinforcers, R11/
R22. Many studies (for review see Davison &
McCarthy, 1988) have found that

log b ~ a log
R11

R22

� �
, ð7Þ

which is a version of the generalized matching
law where a represents the sensitivity of
response ratios to reinforcer ratios (Baum,
1974; for present purposes we ignore the
possibility of biased responding when R11 5

R22).
In summary, the proposed model of DMTS

consists of Equations 3 and 4, which predict
probabilities of attending to the samples and
comparisons; the four states that result from
those probabilities characterized in Figure 5,
together with the calculation of response
probabilities in each state and the pooled
values of p(B1|S1) and p(B1|S2); and the
conversion of pooled p(B1|S1) and p(B1|S2)
into behavioral measures log d, log b, and a.
The terms of the full model are listed and
characterized briefly in Table 1.

Before fitting the proposed model to rele-
vant data, we show that it can account for the
form of the forgetting function, the effects of
variations in sample discriminability, and the
relation between a and the length of the
retention interval. For these predictions, we
use the representative temporal parameters
that served to illustrate the properties of
Equations 3 and 4 in Figure 3.

Forgetting Functions

The relation between log d and the length of
the retention interval t is known as the
forgetting function. Empirically, its form is
monotonic decreasing, positively accelerated.
White (2001) has reviewed a number of
equations that have been proposed to describe
forgetting functions, all of which perform
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Fig. 5. The upper part of this figure shows how probabilities of attending or not attending to the samples and
comparisons in DMTS lead to four states that determine response probabilities p(B1|S1) and p(B1|S2) according to the
expressions for each state in the lower part of the figure; note that p(B2|S1) 5 12 p(B1|S1), and p(B2|S2) 5 12 p(B1|S2).
Failures to attend are equivalent to discriminabilities equal to 1, so that ds is omitted from expressions for states 3 and 4,
and dc is omitted from expressions for states 2 and 4. Overall performance is predicted by weighting the response
probabilities in each state by the probability of entering that state.
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quite well with data from a wide range of
experiments with human and nonhuman
subjects. He suggested that a simple exponen-
tial decay function may be most useful
theoretically because it implies a constant
probability of failure to remember throughout
the retention interval (see also White, 1991).
He also suggested that an exponential decay
with time scaled as the square root of t may be
appropriate if forgetting results from a diffu-
sion-like process related to the standard de-
viation of subjective time. Another common
alternative is the hyperbolic decay function,
which features prominently in research on
delay of reinforcement (see McCarthy &
White, 1987, for discussion).

The upper left panel of Figure 6 shows that
with x 5 z 5 q 5 v 5 0.1, and with d s 5 dc 5 400
(signifying an easy discrimination such as red
vs. green for the pigeon; see Nevin et al., 2005),
our model generates a forgetting function

(filled circles) that lies between the exponen-
tial (unfilled squares) and the hyperbolic (un-
filled circles) or exponential on t 0.5 (filled
triangles) in its degree of curvature. (The
parameters of the three descriptive equations
were chosen to approximate the forgetting
function predicted by the model, with the value
of log d at t 5 0 set equal for all four functions.)
The differences in curvature are easier to
appreciate in the upper right panel of Figure 6,
which plots the logarithm of log d so that the
exponential decay function is linear. The
function predicted by the model is slightly
concave up, and the hyperbolic and scaled
exponential are more strongly concave up.

The lower left panel of Figure 6 compares
forgetting functions with x 5 z 5 q 5 v 5 0.1
for ds 5 400 and for ds 5 4, the latter signifying
a relatively difficult discrimination between
samples. The lower right panel shows that the
functions are essentially parallel when plotted

Table 1

Model terms and parameters.

Components of conditional
discriminations
S1, S 2 Sample stimuli in matching to sample or signal detection
C1, C 2 Comparison stimuli in matching to sample
B1, B 2 Responses defined by comparison stimuli or topography, represented as counts in the

conditional-discrimination matrix of Figure 1.
R11, R 22 Numbers of reinforcers for B11, B22

Model structure
ds Discriminability of sample stimuli

Depends on S1–S2 difference, sensory capacity
Does not depend on reinforcer rate or allocation

dc Discriminability of comparison stimuli
Depends on B1–B2 or C1–C 2 difference, sensory capacity
Does not depend on reinforcer rate or allocation

p(As) Probability of attending to S1 and S2

Depends on reinforcer rate relative to session context
Does not depend on ds, dc, or reinforcer allocation

p(Ac) Probability of attending to C1 and C 2

Depends on within-trial reinforcer rate relative to sample context
Does not depend on ds, dc, or reinforcer allocation

Momentum equations
B Measured response rate (B/min)
rs Component reinforcer rate in multiple free-operant schedules or reinforcer rate for

attending to S1 and S2

rc Within-trial reinforcer rate after offset of sample stimuli for attending to C1 and C2

ra Overall average session reinforcer rate
x Background disruption or competition for observing or attending to sample stimuli
z Background disruption or competition for observing or attending to comparison stimuli
q Disruption of attending to samples-as-coded per unit time during retention interval.
v Disruption of observing or attending to comparisons per unit time during retention interval
f, c, d Parameters representing the effects of experimentally arranged disrupters: ICI food,

contingency termination, and generalization decrement.
b Sensitivity of response rates or probabilities of attending to rs/ra or rc/rs.
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Fig. 6. The upper left panel shows the forgetting function predicted by Equations 3 and 4 with ds 5 dc 5 400, with x 5 z
5 q 5 v 5 0.1, and with the representative experimental parameters used to generate the functions in Fig. 3. The
predicted function (filled circles) is compared with some descriptive functions that have been used to characterize
empirical forgetting functions: exponential (unfilled squares), hyperbolic (unfilled circles), and exponential with
retention intervals scaled as t 0.5 (filled triangles). Parameters are indicated in the legend. The upper right panel presents
the same functions (with the same legend) as logarithms of log d, so that exponential functions are rendered as linear.
The lower left panel illustrates the predicted effect of reducing sample discriminability, ds, from 400 to 4, together with
the predicted effects of increasing background disruptors x and z from 0.1 to 0.5 with ds 5 400. The lower right panel
presents the same functions (with the same legend) as logarithms of log d, showing that changes in sample
discriminability or background disruption appear as changes in the intercept but not the slope of the forgetting function.
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as the logarithm of log d. White (1985; see also
1991, 2001) has shown that variables affecting
discrimination of the samples, such as the
physical disparity between S1 and S2, sample
durations, or sample response requirements,
lead to empirical forgetting functions with
different values at t 5 0 but with similar decay
rates. Thus, model predictions generally accord
with many research findings.

The lower panels of Figure 6 also show that
predicted forgetting functions are almost iden-
tical if ds is 4 with x 5 z 5 0.1, or if ds 5 400 with
x 5 z 5 0.5. Thus, the major effect of increasing
background disruptors x and z is to shift the
function downward without significantly alter-
ing its slope. The similarity of the effects of
reducing sample discriminability or of increas-
ing disruption suggests that either discrimina-
bilities ds and dc or disruptors x and z could be
omitted from the model. Nevertheless, we
retain both sets of model terms to distinguish
between the effects of variations in the stimuli,
which determine response probabilities via the
four sets of Davison–Nevin (1999) equations
given in Figure 5, and the effects of variations
in disruption and reinforcement, which de-
termine p(A s) and p(Ac) via Equations 3 and 4
and thereby determine the relative frequencies
of entry into the four states depicted in
Figure 5. Thus, the model can distinguish cases
with high discriminability, represented by large
values of d s and dc, but low probability of
attending, represented by large values of x and
z, and vice versa.

White (1985, 1991, 2001) also has shown
that variables such as houselight illumination
during the retention interval, usually inter-
preted as interference, affect the decay rate
but not the initial level of exponential func-
tions that describe empirical forgetting func-
tions. The left panel of Figure 7 shows that
increasing q from 0.1 to 0.3 leads to a sharp
increase in decay rate but no change in initial
level, whereas increasing v from 0.1 to 0.3
leads to a lesser increase in decay rate and
a small decrease in initial level. The right
panel of Figure 7 plots the forgetting func-
tions as the logarithm of log d, where their
linearity makes their exponential form and
differences in their slopes more obvious.

The functions presented in Figures 6 and 7
demonstrate that the present model can
simulate the major findings concerning the
level and slope of empirical forgetting func-

tions that have been described by exponential
functions.

Sensitivity to Reinforcer Ratios

Davison and Nevin (1999) modeled the
usual monotonic decreasing forgetting func-
tion by allowing the matrix of effective re-
inforcers to change over time in the retention
interval, approaching equal effective reinforce-
ment in all four cells as the retention interval
became very long. They also showed that when
the ratio of reinforcers, R11/R22, was varied,
their model predicted increasing sensitivity to
reinforcement (a in Equation 7) as the re-
tention interval increased and log d decreased.
Thus, Davison and Nevin predicted an inverse
relation between the two dependent variables,
log d and a. A similar inverse relation between
log d and a was predicted by a very different
model proposed by White and Wixted (1999).
Unfortunately, the data on the relation be-
tween the retention interval and a are mixed:
Jones and White (1992) and White and Wixted
(1999) found that sensitivity increased, where-
as McCarthy and Davison (1991) and
McCarthy and Voss (1995) found that sensitiv-
ity decreased, and Harnett, McCarthy, and
Davison (1984) found a decreasing trend. The
latter three studies obtained the usual mono-
tonic decreasing forgetting functions; that is,
both sensitivity and accuracy decreased with
increasing retention intervals, implying a direct
relation between sensitivity and accuracy.

The present model can simulate both in-
creasing and decreasing relations between
a and the length of the retention interval as
shown in the left panel of Figure 8; dc 5 400
for all examples. With ds 5 400 and x 5 z 5 q
5 v 5 0.1, our model predicts a shallow
decreasing relation between sensitivity and
retention interval length (filled circles). The
predicted function starts higher and the de-
crease is more pronounced if ds 5 4 (filled
squares). If q is increased to 0.2 and v is
decreased to 0, sensitivity to reinforcement is
predicted to increase as the retention interval
becomes longer (unfilled circles). The reason
is that p(As) decreases as the retention interval
increases, resulting in an increased probability
of entry into State 3, where response proba-
bilities depend only on the ratio of reinforcers,
R11/R22 (see Figure 5). By contrast, sensitivity
is predicted to decrease as the retention
interval becomes longer if ds 5 4 (unfilled
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squares) because increased numbers of effec-
tive reinforcers in cells 12 and 21 reduce the
relative importance of State 3 in the calcula-
tion of pooled p(B1|S1) and p(B1|S2).1

The right panel of Figure 8 depicts the
relations between the dependent variables
a and log d for two cases displayed in the
left panel. The unfilled circles exhibit an
inverse relation between a and log d of the
sort that was predicted by Davison and Nevin
(1999) and by White and Wixted (1999), and
obtained by Jones and White (1992). The
unfilled squares depict a direct relation of the
sort obtained by McCarthy and Davison
(1991) and by McCarthy and Voss (1995).
The unfilled triangles, with ds 5 400, x 5 0.2,
z 5 0.5, and q 5 v 5 0.1, depict a case where
a is relatively low and constant or slightly
increasing with respect to log d. White and
Wixted (1999, Experiment 3) obtained a neg-
ative relation when the ITI was 15 s and
accuracy was generally high, as in the
function coded by unfilled circles, and
a shallow positive relation when the ITI was
1 s and accuracy was generally low, as in the
function coded by unfilled triangles. White
and Wixted interpreted their 1-s ITI results in

terms of proactive interference. Here, the
higher values of x and z represent increased
general background interference with attend-
ing, which could be interpreted as proactive
interference.

In summary, our model can simulate the full
range of results that have been reported in the
literature. It does not, however, identify exper-
imental variables that might affect parameters
x, z, q, and v. If such variables can be identified
and manipulated systematically in conjunction
with the discriminability of the samples, it
should be possible for a single experiment to
generate the full range of relations between
sensitivity, retention interval length, and accu-
racy of discrimination that have been reported
in the literature, as suggested by Figure 8.

Modeling Experimental Data

We now show that our model can be fitted to
the data of studies where reinforcer rates and
disruptors are varied within or between condi-
tions. Equations 3 and 4 state that p(As) and
p(Ac) are determined by the values of the
relevant disruptors and by ratios of reinforcer
rates, and implicitly assume that p(As) and
p(Ac) are independent of the discriminabilities
of samples and comparisons, ds and dc. In the
limit, this assumption is implausible: Why

Fig. 7. Forgetting functions predicted by Equations 3 and 4 with ds 5 dc 5 400, x 5 z 5 0.1, and with different values of
q and v. The left panel presents the functions in their standard form with log d as the measure of accuracy; the right panel
presents the same functions (with the same legend) as logarithms of log d to show that changes in retention-interval
disruptors appear as changes in the slope of the forgetting function, with little or no change in the intercept.

1 Worksheets are available on the JEAB website: seab.
envmed.rochester.edu/jeab/extensions/nevin.html
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should attending be directed to indistinguish-
able samples or comparisons? A study by Alsop
(1988) exemplifies the uncertainties. He var-
ied sample disparity between conditions, in-
cluding zero disparity (ds 5 1), in a signal-
detection paradigm. Nevin et al. (2005)
obtained a satisfactory fit to the data of all
Alsop’s conditions with a single value of p(As),
but it would have been equally good if we had
allowed p(As) to vary directly with sample
disparity, including p(As) 5 0 for the zero-
disparity condition. The problem is that the
parameters of Equations 3 and 4 become
indeterminate when the model is fitted to
data from conditions where ds or dc 5 1,
signifying complete confusability (see Fig-
ure 5). Accordingly, we consider only studies
where the subjects were pigeons and the
samples and comparisons were highly discrim-
inable key colors, and set ds 5 dc 5 400 (as in
Nevin et al., 2005) in all model applications
reported here. The model was fitted to data
averaged over pigeons by a nonlinear curve-
fitting program (Microsoft Excel SolverTM).

Reinforcer Probabilities in Multiple Schedules

Odum, Shahan, and Nevin (2005) examined
the effects of reinforcement probability on
forgetting functions in the steady state and
evaluated their resistance to change during
disruption in a paradigm designated VI DMTS,
which permits direct comparison with the
effects of reinforcement and disruption on
VI response rates. Specifically, pigeons pro-
duced DMTS trials according to variable-in-
terval (VI) 20-s schedules with reinforcer
probabilities of .9 or .1 for correct responses
in the components of a multiple schedule.
Components were signaled by lighting the
center key red or green, and alternated after
four DMTS trials were completed. Compo-
nents were separated by a 15-s intercomponent
interval (ICI). The samples and comparisons
were yellow and blue. Samples remained on
until the first center-key peck after 3 s. During
the retention interval, the center key was
lighted red or green according to the compo-
nent currently in effect. Comparisons termi-
nated with a single peck and were followed by

Fig. 8. The left panel shows that sensitivity to reinforcer ratios (a) is predicted to be roughly constant over the retention
interval with ds 5 400 and with x 5 z 5 q 5 v 5 0.1 (filled circles). When q 5 0.2 and v 5 0 with ds 5 400, the function
increases (unfilled circles). When ds is decreased to 4 with x 5 z 5 q 5 v 5 0.1 (filled squares), and with q 5 0.2 and v 5
0 (unfilled squares), the functions decrease. Thus, the slope of the predicted relation between a and the retention interval
depends on sample discriminability and the values of parameters representing disruptors in Equations 3 and 4. The right
panel shows that the predicted relation between log d and a for x 5 0.1, z 5 0.1, q 5 0.2, and v 5 0 decreases with ds 5 400
(unfilled circles) and increases with ds 5 4 (unfilled squares). The function with ds 5 400, x 5 0.2, z 5 0.5, q 5 0.1, and v 5
0.1 (unfilled triangles) mimics the effects of very short intertrial intervals reported by White and Wixted (1999).
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2-s food or blackout. Performance was dis-
rupted by response-independent food during
the ICI, and by extinction, both of which have
been employed in many studies of the re-
sistance to change of VI response rates.

The results showed that the VI response rate
was higher and more resistant to change in the
richer component, as in many multiple-sched-
ule studies. Likewise, the level of the forgetting
function was higher and more resistant to
change in the richer component, although ICI
food had relatively little effect at the shortest
retention interval and both functions were
flattened during extinction. Figure 9 displays
DMTS accuracies, expressed as average values
of log d during baseline and disruption tests.

Nevin, Milo, Odum, and Shahan (2003) had
used the same general procedure but with zero
retention intervals; their discrimination data
were modeled by Nevin et al. (2005) using the
present Equations 3 and 4 with t 5 0, augment-
ed to account for the effects of the different
disruptors employed in their experiment. Here,
we use exactly the same approach to model the
data of Odum et al. (2005), with t varying from
0.1 to 8 s. The model equations are:

p(As) ~ exp
{ x { qt { f { c { drs

rs

ra

� �b

0
BBB@

1
CCCA, ð8Þ

and

p(Ac) ~ exp
{ z { vt { f { c { drc

rc

rs

� �b

0
BBB@

1
CCCA, ð9Þ

where f represents the added disruptive effects
of ICI food, and c and d represent the disruptive
effects of suspending the reinforcer contingen-
cy and generalization decrement from reinforc-
er omission, respectively (see Nevin, McLean, &
Grace, 2001, for the treatment of extinction).

To apply Equations 8 and 9 to the data of
Odum et al. (2005), we began by fitting the
pooled baseline data (N 5 8) with f, c, and
d equal to 0, and with x 5 z and q 5 v in order
to minimize the number of free parameters.
With x 5 z 5 0.012 and q 5 v 5 0.023, the
quality of the fit is excellent, as shown in the
top panel of Figure 9; the proportion of

Fig. 9. Forgetting functions reported by Odum, Shahan,
& Nevin (2005) in multiple VI DMTS with reinforcer
probabilities of .9 or .1 in the components. The top panel
presents average forgetting functions in baseline, the
middle panel presents forgetting functions pooled over
10 sessions with food presented during the ICI, and the
bottom panel presents forgetting functions pooled over 10
sessions of extinction. Predictions based on Equations 8
and 9 are shown in each panel together with best-fitting
parameter values; see text for explanation.
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variance accounted for (VAC) is .98. Keeping
those values of x, z, q, and v constant, we then
allowed f, c, and d to vary so as to fit the data
for ICI food and extinction. Thus, in effect,
five free parameters were fitted to 24 data
points in all. As shown in the center and
bottom panels of Figure 9, the general agree-
ment between data and predictions for ICI
food and for extinction is satisfactory. With f 5
0.034, c 5 0.181, and d 5 0.0001 (signifying
minimal generalization decrement), VAC is
.91 for the full data set.

Evidence for Stimulus Control of Attending during
the Retention Interval

Our conception of attending during DMTS
trials (Figure 2) suggests that some form of
attending to the samples and comparisons
occurs during the retention interval even
though the stimuli themselves are not present.
If probabilities of attending depend on re-
inforcer rates signaled by multiple-schedule
component stimuli according to Equations 3
and 4, as suggested by our analyses of the data
of Odum et al. (2005), then reversing those
stimuli during the retention interval should
reverse the probabilities of attending. Odum,
Shahan, and Nevin (2006)2 replicated the
baseline procedure described above and then
reversed the retention-interval key colors, with
all other aspects of the procedure unchanged.
Thus, during cue reversal, the retention-in-
terval key color incorrectly signaled a low
reinforcer probability in the rich component
and vice versa.

METHOD

Subjects

Five pigeons that had served in related VI
DMTS studies were maintained at 80% of their
free-feeding weights.

Apparatus

The same three-key chamber that was used
by Odum et al. (2005).

Procedure

The baseline procedure used by Odum et al.
(2005), described above, was in effect for 44 to

51 sessions, after which all 5 pigeons were
performing at levels similar to those shown in
Figure 9, top panel. Then, retention-interval
key colors were reversed between rich (re-
inforcer probability .9) and lean (reinforcer
probability .1) components for 10 sessions, with
all other aspects of the procedure unchanged.
Thus, reinforcer probability was signaled cor-
rectly during the VI segments of each compo-
nent and incorrectly during retention intervals.
Cue reversal was followed by 10 sessions of
baseline recovery (i.e., with retention-interval
key colors again corresponding to those in the
VI segments of each component).

RESULTS

VI response rates and log d at each retention
interval were calculated for both components
from data pooled over the final 10 sessions of
baseline, all 10 sessions with reversed cues, and
10 sessions of baseline recovery. In addition,
rates of key pecking during retention intervals
were calculated from data pooled over the four
retention intervals within each condition.

For all 5 pigeons, VI response rates during
cue reversal increased relative to baseline in
the lean component and then decreased
during return to baseline. VI response rates
were not consistently affected in the rich
component. The average data are shown in
Figure 10, left panel. For all 5 pigeons, rates of
key pecking during retention intervals de-
creased in the rich component and increased
in the lean component during cue reversal,
and then increased in rich (with one excep-
tion) and decreased in lean during return to
baseline. Average data are shown in Figure 10,
right panel. Retention-interval rates varied
substantially among pigeons, perhaps because
retention-interval pecking was not controlled
by explicit experimental contingencies.

Average forgetting functions are presented
in Figure 11, top left panel. To a first approx-
imation, it appears that forgetting functions
are roughly parallel, and that cue reversal
increased the level of the lean-component
function and decreased the level of the rich-
component function (except at the 0.1-s
retention interval). Because the average func-
tions were roughly parallel, their overall levels
can be characterized by the mean value of log
d across retention intervals, and the effects of
cue reversal can be expressed as the difference

2 Paper presented at the meetings of the Association for
Behavior Analysis, May 2006, Atlanta, GA. Copies of all
individual data are available from the first author.
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between mean log d in the rich and lean
components. These difference scores are pre-
sented for individual subjects in the top right
panel of Figure 11. The rich–lean difference
decreased during cue reversal for every pi-
geon, and increased during return to baseline
for 4 of the 5 pigeons, although the differ-
ences were small for P1821 and P3060.

Although the effect of cue reversal might be
expected to diminish with continued exposure
because the reversed cues did not in fact signal
reversed reinforcer probabilities, the average
difference between log d values in rich and
lean components was essentially constant over
the 10 reversed-cue sessions (data not shown).

To model the cue-reversal data, we assumed
that rs in each component was based on the
weighted mean of reinforcer rates explicitly
signaled by the consistent and reversed cues.
For example, in the rich component, a reinforc-
er probability of .9 was signaled during the 20-s
VI portion of each cycle preceding sample
presentation and a reinforcer probability of .1
was signaled (incorrectly) during the retention
interval. Thus, the weighted average reinforcer
probability in the rich component at each
retention interval t was calculated as (.9*20 +
.1*t)/(20 + t). The signaled reinforcer proba-
bility for rc in the rich component during cue
reversal was simply .1 rather than .9. Reinforcer
rates rs and rc were calculated from these
probabilities and entered into Equations 3

and 4 to predict DMTS accuracy during cue
reversal. If x 5 z 5 0.012 and q 5 z 5 0.023, the
values that were used for fitting the baseline
data of Odum et al. (2005), the predicted mean
difference between the baseline forgetting
functions is much smaller than obtained and
VAC is 0.68. When all four parameters were
allowed to vary, the best fit to the data was given
by x 5 0.012, z 5 0, q 5 0.068, and v 5 0.039,
with VAC 5 .95. The difference in level between
predicted functions shown in the lower left
panel of Figure 11 is smaller than for the
average data in the upper left panel. However,
when data and predictions for cue reversal are
reexpressed as proportions of the preceding
baseline, the trends are well described by the
model as shown in the lower right panel.
Specifically, the obtained values of relative log
d in the rich and lean components were
decreasing and increasing functions of the
retention interval, respectively, and the pre-
dicted functions agree closely with those
obtained.

DISCUSSION

The effects of cue reversal on forgetting
functions suggest that during the retention
interval, the pigeons were engaged in some
sort of behavior that came under stimulus
control by cues signaling high or low re-
inforcer probabilities. Whatever they were

Fig. 10. The left panel presents average response rates during the VI segment of rich (reinforcer probability .9) and
lean (reinforcer probability .1) components of multiple VI DMTS before, during, and after cue reversal during the
retention interval, and the right panel presents key pecking rates during retention intervals in the same format; vertical
bars indicate the standard error.
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doing (what we have called ‘‘attending’’ here)
affected discrimination accuracy in a way
consistent with reinforcer probabilities sig-
naled during the pigeons’ extensive histories
and during the VI segments of each compo-
nent during reversal testing. The correspond-
ing changes in retention-interval key pecking
suggest that inferred attending may accompa-
ny, or be indexed by, overt behavior. The
model proposed here describes the data quite
well, suggesting that attending to the samples
and comparisons during retention intervals is
controlled by cues signaling different rein-

forcer rates in accordance with Equations 3
and 4.

Effects of Different VI Schedules in Multiple VI DMTS

The multiple VI DMTS paradigm was in-
troduced in an earlier study by Schaal, Odum,
and Shahan (2000). They arranged two compo-
nents with different VI schedules but the same
reinforcer probabilities, whereas Odum et al.
(2005) used the same VI schedules with
different reinforcer probabilities. In addition,
Schaal et al. varied the length of the retention
interval between conditions, whereas Odum et

Fig. 11. The upper left panel displays forgetting functions before and during retention-interval cue reversal averaged
over subjects. The upper right panel shows the difference between mean log d in rich and lean components before,
during, and after cue reversal. The bottom left panel presents forgetting functions predicted by the model with
parameter values in the legend. The bottom right panel displays the forgetting functions during cue reversal as
proportions of the prereversal baseline together with model predictions.
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al. varied the length of the retention interval
within components. Schaal et al. found that the
forgetting function, with accuracy measured as
proportion correct, was lower and somewhat
steeper in the richer component (VI 20 s) than
in the leaner component (VI 120 s). In view of
the procedural differences between studies,
together with the opposite ordering of forget-
ting functions, it is of more than passing interest
that our model can account for the data of
Schaal et al. as well as those of Odum et al.

To apply our model to the data of Schaal et
al. (2000), we transformed average proportion
correct (p) to logit p 5 log(p/(1-p), which is
equivalent to log d when response bias is
absent. As for the fits described above, we set ds

5 dc 5 400 and b 5 0.5, and fitted Equations 3
and 4 with four parameters, x, z, q, and v, to fit
14 data points. With x 5 z and q 5 v, as in our
fits to the data of Odum et al. (2005), the
predicted forgetting function for the VI 20-s
component of Schaal et al. lies above that for
the VI 120-s component, contrary to the data,
and VAC is only .72. With all four parameters
free to vary, however, the data are satisfactorily
described as shown in Figure 12. With x 5 0, z
5 0.440, q 5 0, and v 5 0.347, VAC is .96. The
values of x and q suggest maximal attending to
the samples, whereas the values of z and v
suggest a relatively low level of attending to the
comparisons. The latter suggestion is plausible
because Schaal et al. used a correction pro-
cedure that ensured receipt of reinforcement
on every trial, regardless of which comparison
was pecked at the first opportunity.

Our model for response rates (Equation 2)
requires that response rate in the VI 20-s
component be greater than that in the VI 120-s
component at all retention intervals. However,
Schaal et al. (2000) found that response rate in
the VI 20-s component usually decreased to
levels below those in the VI 120-s component
as the retention interval increased across
conditions. We address this problem in the
Discussion; for now, we conclude that our
model gives a good account of the effects of
the length of the VI on forgetting functions in
multiple VI DMTS.

Reinforcer Probabilities or Magnitudes in Signaled
Trials

A different paradigm for examining re-
inforcer effects within sessions employs with-
in-trial signals. For example, Nevin and Grosch

(1990) arranged DMTS trials with long- or
short-duration reinforcers in quasirandom
order, with auditory stimuli that accompanied
each trial signaling whether the reinforcer
would be long or short on that trial. They
found that the forgetting function in the long-
reinforcer trials was higher than and parallel
to the function in short-reinforcer trials. This
‘‘signaled magnitude effect’’ has been repli-
cated by Jones, White, and Alsop (1995) and
McCarthy and Voss (1995). Brown and White
(2005, Experiment 2) repeated the signaled-
magnitude effect under conditions where the
signal was presented after sample offset, pre-
sumably precluding differential attending to
the sample on the basis of signaled reinforce-
ment. Here we will model the data of
Experiment 1 by Brown and White because it
arranged different reinforcer probabilities,
rather than magnitudes, and thus is more
nearly comparable to the study by Odum et al.
(2005).

Brown and White’s (2005) Experiment 1
arranged a 15-s ITI before each sample pre-
sentation. Then, after 10 responses, the color
sample was extinguished and replaced with
a geometric form signaling the reinforcer
probability for that trial. The form remained
on throughout the retention interval and until
one of the comparison colors was chosen. As

Fig. 12. Forgetting functions based on average data
reported by Schaal, Odum, & Shahan (2000) in multiple
VI DMTS with VI 20-s and VI 120-s schedules in the
components, compared with predictions based on Equa-
tions 3 and 4 with parameter values in the legend. The
data have been transformed from proportion correct to
logit p, which is equivalent to log d. See text
for explanation.
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shown in Figure 13, the forgetting function on
trials with reinforcer probability 1.0 was higher
than and roughly parallel to the function on
trials with reinforcer probability 0.2.

To apply our model, it is necessary to
calculate rs separately for time preceding and
following the signal indicating reinforcer prob-
ability on a given trial. Before and during
sample presentation, rs must be the same for
both trial types. During the retention interval,
however, rs must differ between trial types, and
because the subject is assumed to attend to the
sample-as-coded after sample offset, this differ-
ence can provide a basis for differential accura-
cy. In modeling, we used a weighted average of rs

preceding and following sample offset to
summarize its value for each type of trial.

To fit Equations 3 and 4 to the data of
Brown and White (2005, Experiment 1), we set
ds 5 dc 5 400 and b 5 0.5 as for the multiple VI
DMTS studies described above. Thus, the four
parameters of Equations 3 and 4, x, z, q, and v,
were used to fit 10 data points. With x 5 z and
q 5 v, as in our fits to the data of Odum et al.
(2005), VAC is .91 but the predicted forgetting
functions are too close together. With all four
parameters free to vary, however, VAC is .96
and the predicted functions are appropriately
separated, as shown in Figure 13. The best-
fitting values of x and q are 0, indicating
maximal attending to the samples, perhaps
because of the FR 10 contingency on pecks at

the sample. The best-fitting values of z 5 0.030
and v 5 0.087 indicate moderate disruption of
attending to the comparisons.

Brown and White (2005) did not examine
resistance to change. Nevin and Grosch (1990)
examined resistance to change in their sig-
naled-magnitude study and found little consis-
tent difference between large- and small-
magnitude trials, contrary to the multiple-
schedule results of Odum et al. (2005).
Interestingly, our model predicts different
results for signaled reinforcement trials and
multiple schedule components. In signaled
reinforcement trials, increasing x in Equa-
tion 3 has similar decremental effects on
forgetting functions relative to baseline in
both high- and low-probability trials; increas-
ing z in Equation 4, in contrast, produces
a smaller decrease relative to baseline in high-
than in low-probability trials. The reason is
that reinforcer probability is not signaled until
sample onset (or offset, as in Brown & White)
so that rs differs between high-probability and
low-probability trials only after signal onset. As
a consequence, rs/ra differs relatively little
between trial types, whereas rc/rs is substan-
tially greater on high-probability trials. By
contrast, in multiple schedules, increasing x
in Equation 3 produces a much smaller de-
crease, relative to baseline, in the high- than in
the low-probability component, whereas in-
creasing z in Equation 4 produces similar
decreases relative to baseline in both compo-
nents – just opposite from the predicted
effects of increasing z in signaled reinforce-
ment trials. The reason is that in multiple
schedules, reinforcer probability is signaled
throughout each component so that rs/ra

differs between components in direct pro-
portion to the component reinforcer proba-
bilities, whereas rc/rs is the same for low- and
high-probability components because both rc

and rs are directly proportional to reinforcer
probability. The divergent predictions for
these two paradigms could be tested by
comparing the effects of sample-specific and
comparison-specific disruptors.3

Sensitivity to Reinforcer Ratios

We showed above that the sensitivity of log
b to the ratio of reinforcers R11/R22 (a in

Fig. 13. Forgetting functions based on average data
reported by Brown and White (2005) in DMTS trials with
signaled reinforcer probabilities of 1.0 or .2, compared
with predictions based on Equations 3 and 4 with
parameter values in the legend. See text for explanation.

3 Worksheets are available on the JEAB website: seab.
envmed.rochester.edu/jeab/extensions/nevin.html
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Equation 7) could be either an increasing or
a decreasing function of the retention interval,
depending on the values of model parameters.
Here, we fit the model to the data of Jones and
White (1992), who examined the relation
between a and the retention interval within
sessions. The probabilities of reinforcement
for B1 and B2 were varied between conditions
so as to give different values of R11/R22 while
the total reinforcer rate, R11+R22, was constant.
The average values of log d are presented in
the left panel of Figure 14 as functions of
log(R11/R22) with retention-interval length as
a parameter. Except at the shortest retention
interval (0.01 s), the data suggest concave-up
functions, especially at the longest retention
interval (12 s). The predictions shown with the
data are based on fits of Equations 3 and 4
with x 5 0.005, z 5 0.032, q 5 0, and v 5 0.303;
as in other fits with colored lights as samples
and comparisons, ds 5 dc 5 400, and b 5 0.5 as
usual. One point at 0.01 s, which included
seriously deviant data of Pigeon X3, was
omitted from the fit; thus, VAC 5 .87 for 19
data points. If x 5 z and q 5 v, VAC decreases
to .85 and the predicted functions in the left
panel are flattened.

The right panel of Figure 14 shows that with
these parameters, the model predicts an in-

creasing relation between sensitivity to rein-
forcement a and the retention interval that
agrees with the data in direction but not in
level. If x 5 z and q 5 v, the predicted function
in the right panel goes down rather than up, as
suggested by Figure 8 above. Note that if the
generalized matching law, Equation 7, was an
accurate descriptor of these data, the relations
in the left panel would be horizontal rather
than concave-up in form. Therefore, the use of
Equation 7 to estimate a may be inappropriate.

McCarthy and Voss (1995) arranged a DMTS
procedure where reinforcer magnitude (4.5 s
vs 1.5 s) was signaled within trials, and the
ratio of reinforcers for correct responses, R11/
R22, was varied between conditions. They
obtained higher forgetting functions on
large-magnitude than on small-magnitude
trials, but overall, the levels were unusually
low for red–green color matching by pigeons.
They also obtained systematic decreases in
sensitivity to differential reinforcement as
functions of the retention interval, with higher
sensitivity in large- than in small-magnitude
trials. We took summary values of log d and
a from their Figures 2 and 5 because the full
data set is no longer available. To model these
data, we multiplied the numbers of reinforcers
used to calculate ra, rs, and rc by reinforcer

Fig. 14. The left panel shows how accuracy depended on the log ratio of reinforcers for correct responses at four
retention intervals in the average data of Jones and White (1992), and the right panel shows how sensitivity to
reinforcement (a) depended on the retention interval. In the left panel, data are coded for the retention interval and
compared with predictions (designated p) based on Equations 3 and 4, with parameter values in the legend; the grey-
filled circle includes seriously discrepant data from one pigeon at the 0.01-s retention interval, and was not used in model
fits. See text for explanation.
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durations, thus giving total time of access to
food. Our model does not fit their summary
values at all well unless we allow ds, dc, and b to
take values substantially different from those
we have used throughout this paper. The
problem is illustrated in Figure 15: Although
the orders and trends of predicted functions
correspond to the reported summary values,
predicted values of log d (upper panel) are
much too high and predicted values of a (lower
panel) are much too low. The problem may
arise in part from uncertainties about how best
to model reinforcer magnitude as opposed to
reinforcer probability or rate in the Davison–
Nevin (1999) model (see also Alsop & Porritt,
2006, and discussion below).

Delays to Reinforcement

Another parameter of reinforcement that
affects the accuracy of DMTS performance is
delay between choice of B1 or B2 and pre-
sentation of the reinforcer. In a parametric
study of reinforcer delays in DMTS, Sargisson
and White (2003) varied retention intervals
within conditions, and varied reinforcer delays
between conditions, both over the range from
0 to 8 s, with a 12-s ITI. They found that
forgetting functions became lower and some-
what steeper as the reinforcer delay increased.
The upper panel of Figure 16 presents their
average forgetting functions (with successive
functions displaced upward by 0.5 log units to
avoid overlap). Sargisson and White described
their data with exponential decay functions
and found that the intercept at 0-s retention
interval (log do) decreased and the slope
became steeper (i.e., the decay rate, s, in-
creased) as functions of reinforcer delay, as
shown in the lower left and right panels of
Figure 16, respectively.

To bring our model to bear on the effects of
reinforcer delays, we consider two alternatives.
The first is to include the duration of the delay
in the time base for calculating ra and rc.
However, this approach suggests the need for
attending to the chosen-comparison-as-coded
during the delay to reinforcement, with yet
another parameter for disruption—and the
model then predicts that the slopes of forget-
ting functions decrease with increasing delays,
contrary to the data. A second approach is to
construe the reinforcer delay as degrading the
value of the consequences of correct compar-
ison-key responses according to a hyperbolic

decay function of the sort proposed by Mazur
(1987; for discussion of the pervasiveness of
hyperbolic discounting functions, see Rachlin,
2006). If rs and rc are multiplied by h/(h+d),
where h is the half-life of the hyperbolic decay
function, our model predicts that the intercepts
of forgetting functions decrease and their
slopes become steeper with delay, as reported
by Sargisson and White (2003). It also predicts
that accuracy decreases less rapidly with in-
creasing reinforcer delays at zero retention
interval than with increasing retention inter-
vals at zero delay, as found earlier by McCarthy
and Davison (1991). Predicted functions with

Fig. 15. The upper panel shows forgetting functions for
the average data reported by McCarthy and Voss (1995)
for DMTS trials with signaled reinforcer magnitudes, and
the lower panel shows how sensitivity to reinforcement (a)
depended on the retention interval. In each panel, data
are compared with predictions based on Equations 3 and
4; parameter values for predicted functions are given in
the legend. See text for explanation.
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ds 5 dc 5 400 and the exponent b 5 0.5 as usual,
and with x 5 0.010, z 5 0, q 5 0.015, v 5 0.008,
and h 5 0.6, are shown together with the data in
Figure 16. Predictions agree closely with the
data, and VAC 5 .98 with 30 data points. If x 5 z
and q 5 v, our nonlinear curve-fitting program
was unable to arrive at a solution. Although our
approach is admittedly ad hoc, it may be useful
in permitting the model to deal with other
aspects of reinforcer value such as quality that
can be expressed as weights on the reinforcer
terms rs and rc.

Temporal Parameters

When experimental conditions differ in
their temporal parameters such as the ITI,
reinforcer rates are indirectly affected. It has
long been recognized that DMTS accuracy
depends directly on the length of the ITI (e.g.,
White, 1985). In the present model, increasing
the ITI has the effect of reducing both ra and
rs. If the ITI and retention interval are fixed
within a condition, the time base for ra differs
from that for rs only by the latency of response

Fig. 16. The upper panel presents average forgetting functions obtained in a study by Sargisson and White (2003) with
reinforcer delay (indicated at the right of each function) varied across conditions. To avoid overlap, successive functions
are displaced upward by 0.5 log units. The lower panels show how the intercept (log d at 0 retention interval) and slope
(decay rate, s) of exponential decay functions fitted to the forgetting functions in the upper panel change as a function of
reinforcer delay. In each panel, data are compared with predictions based on Equations 3 and 4 with the value of delayed
reinforcers decreased according to a hyperbolic function, with model parameters in the legend of the upper panel. See
text for explanation.
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to the comparisons; therefore, in terms of the
model, the increase in accuracy that accom-
panies a between-condition increase in the ITI
results from the increase in rc relative to rs,
with a consequent increase in p(Ac). If the
retention interval is increased in proportion to
the ITI, p(Ac) decreases to an extent that
roughly offsets the ITI effect.

Roberts and Kraemer (1982) varied the ITI
from 4 to 32 s and varied the retention interval t
from 0.5 to 4 s between sessions. They found
that accuracy, expressed as proportion correct
(p), was similar at each value of the ratio ITI/t
and increased as a linear function of ITI/t
plotted on a logarithmic scale. The data of their
Experiment 1, converted to logit p 5 log (p/(1-
p)) as for the analysis of Schaal et al. (2000) and
plotted as forgetting functions, are shown as
unfilled symbols in Figure 17, with successive
functions displaced upward by 0.5 log units to
avoid overlap as in Figure 16. To apply Equa-
tions 3 and 4 to these data, we set ds 5 dc 5 400
and b 5 0.5 as for the studies described above.
Model predictions of proportion correct are
shown as lines corresponding to each ITI value.
By inspection, the model gives a good account
of the 16 data points with x 5 0, z 5 0.925, q 5
0.010, and v 5 0.077 (VAC 5 .97). If x 5 z and q
5 v, VAC decreases to .78.

Another temporal parameter that affects
DMTS accuracy is sample duration. A number
of studies have reported that accuracy is an
increasing function of sample duration (e.g.,
Grant, 1976) or the fixed ratio required to
terminate the sample, which necessarily in-
creases sample duration (e.g., Roberts, 1972).
These studies, like those of Roberts and
Kraemer (1982), arranged reinforcers for every
correct response. Under such conditions, sam-
ple duration and ITI length affect ra and rs in
Equations 3 and 4 in exactly the same way, and
predictions should be identical. We are aware
of only one study that varied both sample
duration and ITI, by Kojima (1985). That study
employed auditory stimuli in a successive same/
different go/no-go procedure with monkeys as
subjects, and obtained similar ordinal effects on
discrimination ratios when sample duration
and ITI length were varied. However, retention
intervals differed between sets of conditions,
and quantitative predictions of go/no-go per-
formance do not follow directly from our
model. In any event, the prediction of identical
effects on accuracy may fail because sample

discriminability has been found to depend
directly on sample duration in conditional
wavelength discriminations (Blough, 1996).

To illustrate the problem, we fit our model
to the data of Grant (1976), who varied sample
duration from 1 to 14 s between sessions, with
retention intervals varied from 0 to 60 s within
sessions and a 120-s ITI. Figure 18 presents
Grant’s data, reexpressed as logit p, together
with model predictions; successive forgetting
functions have been displaced upward by 0.5
log units to avoid overlap, as in Figures 16 and
17. With ds allowed to take different values for
each sample duration as indicated in the
figure, and with x 5 0, z 5 0.034, q 5 0.030,
and v 5 0, VAC 5 .97. If ds is set at 400 for all
sample durations, VAC decreases to .71 and
the four predicted forgetting functions are
essentially identical. Thus, comparing the
effects of varying sample durations and ITI
lengths will entail the added complication of
free parameters for sample discriminability.

Summary

All in all, our model gives a good account of
the effects of reinforcer probability on forget-

Fig. 17. Forgetting functions reported by Roberts and
Kraemer (1982, Experiment 1), transformed from pro-
portion correct to logit p (unfilled symbols), plotted
separately for the ITI lengths indicated at the right of
each function. To avoid overlap, successive functions are
displaced upward by 0.5 log units. The accompanying lines
are predictions of Equations 3 and 4 with model param-
eters in the legend. See text for explanation.
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ting functions in multiple VI DMTS, including
their resistance to change; the effects of
signaling reversed reinforcer probabilities dur-
ing retention intervals; and the effects of
length of the VI when reinforcer probabilities
are the same. It gives a similar account of the
effects of reinforcer probability on steady-state
forgetting functions in signaled-reinforcement
paradigms, but makes testably different pre-
dictions for resistance to change. It also can
account for the varied effects of differential
reinforcement for the two correct responses in
relation to the retention interval, for the
effects of reinforcer delays on levels and slopes
of forgetting functions, and for the effects of
intertrial intervals and sample durations on
forgetting functions. It is readily extended to
predict the effects of other determiners of
DMTS performance that can be specified in
terms of the model’s structure and parameters,
some of which we discuss below.

GENERAL DISCUSSION

In qualitative terms, we view the subject as
engaging in various unmeasured, possibly

covert activities related to the sample and
comparison stimuli collectively called ‘‘attend-
ing,’’ where attending is construed as operant
behavior that is functionally similar to an overt
free operant in its dependence on reinforce-
ment. Our model formalizes these notions in
order to make quantitative predictions of
DMTS performance. The model has several
separable components, each of which may be
modified without altering the overall structure
of the model.

1) In a conditional discrimination, attend-
ing to the samples and to the compar-
isons are independent processes, sepa-
rately determined by reinforcers and
disruptors.

2) Attending to the samples and compar-
isons may be reduced by background
disruptors and by disruptors that are
specific to the retention interval.

3) Attending to the samples and compar-
isons both depend on reinforcer rates
relative to their context of reinforcement
according to an expression derived from
behavioral momentum theory.

Fig. 18. Forgetting functions reported by Grant (1976), transformed from proportion correct to logit p (unfilled
symbols), plotted separately for the sample durations indicated at the right of each function. To avoid overlap, successive
functions are displaced upward by 0.5 log units. The accompanying lines are predictions of Equations 3 and 4 with model
parameters in the legend; the values of ds required to fit each function are given at the right. See text for explanation.
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4) The relevant reinforcer rates are based
on times during which attending, includ-
ing observing, discriminating, coding,
and attending to stimuli-as-coded may
plausibly occur.

5) Probabilities of attending are translated
into measured discrimination by way of
the Davison–Nevin (1999) model of
conditional discrimination performance.

Thus, the level of the predicted forgetting
function depends on the discriminability of
the samples and the comparisons (ds and dc)
and the probabilities of attending to those
stimuli, which in turn depend on the levels of
general background disruption (x and z), and
the rate of reinforcement relative to the
context in which attending occurs, calculated
according to Equations 3 and 4. The slope of
the forgetting function also depends on the
extent of disruption during the retention
interval, where attending to the sample-as-
coded and orienting toward the comparison
locations are construed as concurrent inde-
pendent activities with separate disruptors (q
and v) in Equations 3 and 4.

Because the general form of the forgetting
function was predicted directly by Davison and
Nevin (1999) without invoking unmeasured or
covert activities such as attending, it is impor-
tant to review the reasons for bringing
attending into the present model.

First, because the Davison–Nevin (1999)
model was based on ratios of reinforcers, it
predicted that overall reinforcer rate would
have no effect on the level of the forgetting
function. This prediction is contrary to the
multiple-schedule data of Odum et al. (2005)
and related studies reported here, the signaled-
reinforcement data of Brown and White
(2005), and the between-condition data of
White and Wixted (1999, Experiment 1). By
assuming that attending is related to reinforcer
rates relative to their context in the same way as
free-operant response rates, the present model
naturally incorporates the effects of overall
reinforcer rate on resistance to change as well
as the levels of steady-state forgetting functions.

Second, the Davison–Nevin (1999) model
predicted a concave-down relation between
log d and the ratio of reinforcers for correct
responses, R11/R22, contrary to the data of
Jones and White (1992; see Figure 16) and to
those of Harnett et al. (1984, as reanalyzed by

McCarthy & Nevin, 1991). As Nevin et al.
(2005) demonstrated, the form of the relation
between log d and R11/R22 changes from
concave down to concave up when probabili-
ties of attending decrease below 1.0. Thus, the
present model provides a mechanism that
accounts for the form of this relation.

Third, in the Davison–Nevin (1999) model,
the parameters dsb and dbr were identified with
relations between structural aspects of the
experiment such as the physical stimuli, the
contingencies relating them, and the sensory
capacities of the subject, so that the forgetting
function was completely determined by their
values. Therefore, their model could not
account for observed variations in the level or
slope of the forgetting function during disrup-
tion or interference if dsb and dbr remained
constant. The identical difficulty arises in the
discriminability component of the present
model, which uses the structure of the Davi-
son–Nevin model but with ds representing
sample discriminability and dc representing
comparison discriminability to translate attend-
ing into measured performance. However, the
present model explicitly predicts changes in the
slope and level of the forgetting function
during disruption of p(As) or p(Ac) as given
by Equations 3 and 4 with d s and dc constant.

Fourth, the Davison–Nevin (1999) model
predicted that sensitivity to reinforcer ratios
was an increasing function of the length of the
retention interval, and therefore negatively
correlated with accuracy. Jones and White
(1992) and White and Wixted (1999) have
reported data confirming this prediction, but
Harnett et al. (1984), McCarthy and Davison
(1991), and McCarthy and Voss (1995) have
reported decreasing functions and therefore
positive correlations. Because the present
model explicitly allows p(As) and p(Ac) to vary
independently, it can account at least ordinally
for the full range of results, especially in
conjunction with variations in ds (see Figure 8
and related text).

In summary, bringing variations in attend-
ing into the framework of the Davison–Nevin
(1999) model allows it to account for a far
wider range of experimental data.

Interpreting and Measuring Attending within
DMTS Trials

Our model of DMTS performance makes
a series of assumptions about unmeasured,
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possibly covert, activities and when they occur
in DMTS trials (Figure 2). It would be easy to
challenge these assumptions or to dismiss
unmeasured activities as superfluous to a be-
havioral analysis. From a formal theoretical
perspective, it is possible to regard p(As) and
p(Ac), the probabilities of attending to the
samples and comparisons, simply as names for
intervening variables having no properties
other than to select among the states outlined
in Figure 5 and thereby to generate predic-
tions of the sort shown in Figures 6 to 8, or to
organize and summarize empirical data. The
advantage of identifying p(As) and p(Ac) with
unmeasured or covert activities is that the
effects of experimentally arranged disruptors
and conditions of reinforcement may be
predicted—and tested—by assuming these
activities to be functionally the same as overt
responding.

The activities assumed to comprise ‘‘attend-
ing to the sample’’ may be measured by
identifying them with experimental events.
For example, attending before sample onset
may be identified with overt responding that
produces the sample, as in Nevin et al. (2003)
and Odum et al. (2005). Likewise, attending
during the sample may be identified with
sample-specific response contingencies as in
Urcuioli (1985). Attending to the sample-as-
coded may be identified with sample-specific
behavior during the retention interval as
reported by Blough (1959). When overt
topographical variants are not evident, sam-
ple-specific coding may be inferred from the
results of transfer tests (e.g., Cumming, Berry-
man, & Cohen, 1965). Other researchers (e.g.
Honig & Wasserman, 1981; Roitblat, 1980)
have varied the properties of the samples and
comparisons to infer whether subjects were
retrospectively coding the sample or prospec-
tively coding the correct comparison. For our
purposes, it suffices to assume that the subject
is engaged in some activity with respect to the
sample, either overt or covert, during the
retention interval, and that activity may or may
not be attended to when the comparisons are
presented, depending on the reinforcer rate
and the degree of disruption during the
retention interval. Likewise, orienting toward
or observing the comparisons may be identi-
fied with distinctive response topographies
that are required to make contact with those
stimuli (e.g., Wright & Sands, 1981). Attend-

ing to the comparisons might be identified
with comparison-specific responses, but we are
not aware of any studies that have explored
such responses experimentally. The effects of
reversing retention-interval cues in multiple
schedules, described above, strongly suggest
that attending can be controlled by stimuli
correlated with different reinforcer rates.

Figure 2 also suggests that times during
which the disruptors and reinforcer rates
operate in Equations 3 and 4 overlap with
respect to attending to samples and compar-
isons. Therefore, when generalized disruptors
such as ICI food or extinction are brought to
bear on DMTS performance, we cannot know
a priori whether they affect p(As) via x, p(Ac) via
z, or both. Likewise, attending to samples-as-
coded and looking for the comparisons occur
concurrently during the retention interval, so
we cannot know a priori whether retention-
interval disruptors such as houselight illumina-
tion affect p(As) via q, p(Ac) via v, or both.
Because p(As) is affected only by x during
sample presentations, and p(Ac) is affected only
by z during comparison presentations, it may be
possible to arrange disruptors that are specific
to attending to the samples or comparisons
only while they are present. Some predictions
of their effects will be advanced below.

Testable Predictions

Our model simulates representative findings
in the literature and gives respectable quanti-
tative accounts of some archival data. Pre-
diction of novel findings is, of course, a stron-
ger test. Here are some predictions that follow
from the model.

1) Resistance to change in multiple-schedule and
signaled-reinforcement paradigms. As noted
above, the predicted effects of different
disruptors on DMTS performance depend on
the paradigm used. Specifically, in multiple
schedules, the model predicts that disrupting
p(As) produces a greater decrement in accu-
racy in the leaner of two components, whereas
disrupting p(Ac) has a slightly greater disrup-
tive effect in the richer component. Converse-
ly, in signaled-reinforcement trials, disrupting
p(As) produces similar decrements in both
high- and low-reinforcement trials, whereas
disrupting p(Ac) has a larger decremental
effect in low-reinforcement trials. Testing
these predictions requires the development
of effective sample-specific and comparison-
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specific disruptors. Data confirming the pre-
dicted patterns of resistance to change de-
scribed above would provide strong support
for the model, whereas systematic deviations
from predicted patterns would force revision
of some of the model’s components.

2) Behavioral contrast in forgetting functions.
In multiple schedules, free-operant response
rate in a constant component is inversely
related to reinforcer rate in the alternated
component. This result is explained by Equa-
tion 2 for response rate. For example, if the
reinforcer rate rs is constant in one compo-
nent, decreasing the reinforcer rate in an
alternated component decreases ra, the overall
session average reinforcer rate, so that rs/ra

increases and constant-component response
rate must increase (positive contrast). Con-
versely, if the reinforcer rate in the alternated
component is increased, constant-component
response rate must decrease (negative con-
trast). Because Equations 3 and 4 are simply
reexpressions of Equation 2 for probabilities
of attending, the same inverse relation be-
tween attending in a constant component and
reinforcement in an alternated component
must hold. And because DMTS accuracy
depends directly on probabilities of attending
if all free parameter values are constant, the
level of the forgetting function in a constant
component must be inversely related to the
reinforcer rate in an alternated component.

This prediction was tested by Nevin, Shahan,
and Odum (in press) in the multiple VI DMTS
paradigm described above. In one experiment,
constant-component reinforcer probability was
.3 while alternated-component reinforcer prob-
ability was .9 or .1 across successive conditions.
The forgetting functions in the alternated
component in the .9 and .1 conditions were
quite similar to those obtained in the .9 and .1
components of multiple VI DMTS by Odum et
al. (2005), and were well fitted with the same
parameter values: x 5 z 5 0.012 and q 5 v 5
0.023. With these parameters, constant-compo-
nent forgetting functions are predicted to be
parallel, with the forgetting function in the .1
condition 0.13 log units above the forgetting
function in the .9 condition. However, there
was no evidence of contrast in the constant
component, and the average obtained differ-
ence between forgetting functions was 20.04.
Also, contrast effects in VI response rate were
weak and inconsistent.

In a second experiment designed to in-
crease the likelihood of VI response-rate
contrast, constant-component reinforcer prob-
ability was .3 while the alternated component
was either VI 25-s with immediate food or
extinction across successive conditions. Con-
trast effects were obtained in both VI response
rates and in the level of the forgetting
functions; however, the average obtained
difference between forgetting functions was
0.11 log units whereas the predicted value with
x 5 z 5 0.012 and q 5 v 5 0.023 was 0.25. Post-
hoc adjustment of parameter values could, of
course, bring the model into better agreement
with the data, but with four free parameters
and eight data points this would be little cause
for satisfaction. Thus, the model correctly
predicts contrast in forgetting function levels
analogous to that in free-operant response
rates, but the magnitude of the obtained effect
is small and may occur only under special
procedural conditions. More research over
a wider range of reinforcement conditions is
needed to ascertain the generality of contrast
in forgetting functions.

3) Reversing the correlation between sensitivity
and accuracy. As explained above, a reliable
decrease in sensitivity to differential reinforce-
ment as a function of the retention interval, or
a positive relation between sensitivity and
accuracy, cannot be explained by the Davison–
Nevin (1999) model. Neither can it be explained
by the models of Wixted (1989) or of White and
Wixted (1999) without added assumptions, as
described below. It can be explained, however,
by the present model if p(As) is less than 1.0 and
p(Ac) is disrupted during retention intervals.
Therefore, if an effective method for disrupting
p(Ac) can be identified and applied in combi-
nation with a method that maintains p(As) at
a constant level less than 1.0, it should be
possible to reverse the sensitivity–accuracy re-
lation by imposing and removing that disruptor.
Data confirming the predicted effect of such
a disruptor on the sensitivity–accuracy correla-
tion would provide strong support for the
present model.

4) Isosensitivity curves. In signal detection
research and theory, a plot of the probability
of correct detections in relation to the
probability of false alarms with constant signal
intensity is known as the isosensitivity curve,
which has been used to characterize underly-
ing discriminal or threshold processes (e.g.,
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Egan, 1975; Green & Swets, 1966). A standard
method for generating empirical isosensitivity
curves is to vary the relative frequencies or
values of the payoffs for correct detections and
false alarms. This is exactly the method used in
DMTS to evaluate the sensitivity of the ratio of
comparison choices, B1/B2, to the ratio of
reinforcers, R11/R22. Thus, a plot of p(B1|S1) in
relation to p(B1|S2), the probabilities of correct
and incorrect comparison choices with sample
S1, would constitute an isosensitivity curve.

Figure 19 presents simulated isosensitivity
curves for ds 5 400 with the R11/R22 ratio
varied from 199:1 to 1:199, for several values of
p(As) and p(Ac), and compares them with the
isosensitivity curve predicted for ds 5 4, which
represents a moderately difficult discrimina-
tion between samples that is analogous to
a detection task with a moderate signal-to-
noise ratio. We set dc 5 400 for all examples.
The upper left panel presents the simulated
functions on probability coordinates, showing
that the curve for ds 5 4, p(As) 5 .8, p(Ac) 5
1.0 resembles standard detection results. How-
ever, with ds 5 400, the curves differ markedly
from those reported in the detection litera-
ture.

The differences are easier to appreciate
when the functions are replotted as logit
p(B1|S1) in relation to logit p(B1|S2), as shown
in the upper right panel; if the functions
conformed to detection-theory expectation,
they would be roughly linear and parallel to
the major diagonal (Egan, 1975). With ds 5 4,
p(As) 5 .8, p(Ac) 5 1.0, the function is linear
and parallel to the major diagonal over 3 log
units, showing that our model can approxi-
mate the isosensitivity curves in classical de-
tection theory. With ds 5 400, p(As) 5 p(Ac) 5
.8, the curve lies at approximately the same
average distance from the major diagonal,
signifying similar overall accuracy, but it is
truncated in length and more sharply curved
inward. With ds 5 400, p(As) 5 p(Ac) 5 1.0,
the function is much further from the major
diagonal and its inward curvature is even
stronger. Finally, with ds 5 400, p(As) 5 .8,
p(Ac) 5 1.0, the curve becomes wavy and dips
downward in the middle—an admittedly bi-
zarre form that has not, to our knowledge,
appeared previously in the empirical signal-
detection or recognition literature. It would be
regarded as ‘‘improper’’ in detection theory
because its slope changes from negative to

positive acceleration and back again as
p(B1|S2) increases (Egan, 1975).

Because p(As) and p(Ac) decrease systemat-
ically with the length of the retention interval
(see Figure 3), it should be possible to
generate the full range of curves exhibited in
Figure 19 experimentally by arranging many
different reinforcer ratios over a wide range at
each of several retention intervals, with many
trials at each ratio to permit accurate estima-
tion of extreme response probabilities. A
matching-to-sample (MTS) experiment by
Jones (2003, Part 1), which was discussed by
Nevin et al. (2005), met these requirements
but arranged 0-s retention intervals only. As
shown in the lower left panel of Figure 19, the
data approximate the ‘‘improper’’ wavy form
predicted by the model with ds 5 dc 5 400,
p(As) 5 .69, p(Ac) 5 .99 (note that these values
for Part 1 only differ slightly from those fitted
to all of Jones’s data for Parts 1 and 2 by Nevin
et al.). Jones and White (1992), in a study
discussed above, varied reinforcer ratios at
each of four retention intervals, but with
a narrower range of ratios and many fewer
trials per condition than in Jones’s study.
Consequently, the Jones and White data,
shown in the lower right panel of Figure 19,
are far too irregular to evaluate against model
predictions. More precise evaluation of re-
sponse probabilities over wider ranges of
reinforcer ratios in DMTS research could yield
isosensitivity curves with properties that accord
with or challenge model predictions.

Problems and Limitations of the Model

Our model explicitly assumes that attending
is affected by reinforcers and disruptors in the
same way as the rate of overt free-operant
behavior, and uses Equation 2 for response
rate as the basis for the predictions of
attending via Equations 3 and 4. Because
DMTS accuracy is directly related to attending,
variables that affect response rate should affect
accuracy similarly when both are measured in
the same conditions, as in the VI DMTS
paradigm. Consistent with this expectation,
Odum et al. (2005) found that both response
rates and DMTS accuracy were higher in
baseline, and were more resistant to inter-
component food and to extinction, in the
richer of two VI DMTS components. Likewise,
Nevin et al. (in press) found contrast effects in
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response rate as well as average DMTS
accuracy. Additional support for this expecta-
tion was provided by Wilkie, Summers, and
Spetch (1981). They examined the effects of
four different stimuli, presented during the
retention interval, on symbolic DMTS accuracy
in pigeons, and found that houselight and

a geometric form projected on the center key
disrupted DMTS accuracy whereas tones and
chamber vibration had no effect. In a second
experiment, they presented the same stimuli
during free-operant key pecking maintained
by VI reinforcement and found that response
rates were reduced by houselight and geo-

Fig. 19. The upper left panel displays predicted isosensitivity curves relating p(B1|S1 to p(B1|S2) when the ratio of
reinforcers for correct responses is varied, with values of ds, p(As), and p(Ac) indicated in the legend. The upper right
panel displays the same functions with the axes transformed to logit p. The lower left panel presents the data of Jones
(2003, Part 1) for variations in reinforcer probabilities over a wide range with zero retention interval to illustrate rough
agreement with the predicted ‘‘improper’’ form of the isosensitivity curve (see also Nevin et al., 2005, for analysis and
model fits). The lower right panel presents the data of Jones and White (1992, see Fig. 14) replotted as isosensitivity
curves at four retention intervals. See text for explanation.
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metric forms on the key, but that tones and
chamber vibration had no effect. The effects
on accuracy and response rate were correlated
across pigeons (see also Nevin et al., 2003).

In the multiple VI DMTS paradigm, however,
Schaal et al. (2000) did not find similar effects
of increasing the retention interval in DMTS
trials on accuracy and response rate. They
found that accuracy was higher in the VI 120-s
component than in the VI 20-s component at all
retention intervals, with the difference ap-
proaching 0 as the retention interval increased.
By contrast, response rate in the VI 20-s
component was higher at short retention
intervals, but decreased relatively more rapidly
than in the VI 120-s component as the retention
interval increased and was usually lower at long
retention intervals. The functions relating VI
response rates to retention-interval length in
the VI 20-s and VI 120-s components cannot be
fitted by Equation 2 unless the reinforcing
value of DMTS trial onset depends inversely
on the length of the retention interval relative
to the length of the VI schedule. Although the
assumption of temporal relativity in reinforcer
value would be consistent with Fantino’s (1977)
delay reduction theory (see O’Daly, Angulo,
Gipson, & Fantino, 2006, for application to
multiple chain schedules), embedding this
assumption into Equations 3 and 4 would lead
to serious mispredictions of DMTS accuracy as
reported by Schaal et al.

A related problem arises when reinforcer
amount signaled for correct DMTS perfor-
mance varies between trials. A number of
studies have found that reinforcer magnitude
and rate have functionally similar effects on
response rate and resistance to change in
multiple schedules (see Nevin & Grace, 2000,
for review). Therefore, the same should be
true for DMTS accuracy. However, when
reinforcer duration was treated like reinforcer
rate, the model performed poorly with the
DMTS data for signaled reinforcer magnitudes
reported by McCarthy and Voss (1995). Davi-
son and Nevin (1999) considered various ways
to treat reinforcer magnitude, none of which
was entirely satisfactory, and Alsop and Porritt
(2006) have reported some effects of reinforc-
er magnitude that raise further challenges to
its treatment by the Davison–Nevin model.
The general problem may be that the present
model has no specific provision for incorpo-
rating variations in reinforcer value into

predictions derived from Equations 3 and 4
via the Davison–Nevin model.

Another problem arises when reinforcers for
correct responses on S1 and S2 trials differ in
magnitude, probability, or quality. In DMTS,
differential outcomes of this sort typically
maintain higher and shallower forgetting func-
tions than in otherwise comparable conditions
where the same outcomes are arranged on both
S1 and S2 trials. This result does not follow from
our model in its present form. A comprehensive
review by Urcuioli (2005) concluded that the
effect of differential outcomes is mediated by
learned differential expectancies that combine
with S1 and S2 to form compound samples S1E1

and S2E2, where E1 and E2 represent the
expectancies of the outcomes signaled by S1

and S2. In some cases, E1 and E2 may correspond
to different overt behavior on S1 and S2 trials
(e.g., Alling, Nickel, and Poling, 1991; see
Urcuioli, 1985, 2005 for discussion). Our model
can account for higher and shallower forgetting
functions for compound samples if we assume
independent attending to each element, so that
p(ASE) 5 p(AS) + p(AE) – p(AS)*p(AE). Because
p(ASE) for the compound is greater than for
either element, accuracy is higher and may
decrease less with increasing retention intervals
than in an otherwise identical condition with
nondifferential outcomes, depending on the
values of parameters x, z, q, and v. Research on
the level and resistance to disruption of
forgetting functions with differential outcomes,
together with parallel research using com-
pound samples, may indicate the plausibility
of this approach; we defer attempts to model
the effects of differential outcomes until the
results of such research become available.

Relations to Other Theoretical Accounts of DMTS
Performance

There are some interesting similarities
between our approach and that of Wixted
(1989). Wixted proposed that in DMTS, the
discriminative strength (p) of the sample was
given by a function derived from Fantino’s
(1977) delay-reduction theory, where the ratio
of the ITI to the retention interval is related to
the magnitude of delay reduction. As such, it
involves the same terms as the reinforcer rate
ratios rs/ra and rc/rs in our Equations 3 and 4.
In Wixted’s model, the effects of both dura-
tions are adjusted by separate additive sensi-
tivity parameters. The effect of changing the
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values of these parameters is similar to the
effect of changing x and z in Equations 3 and
4. Therefore, it is not surprising that Wixted’s
predictions of the Roberts and Kraemer (1982,
Experiment 1) data are strikingly similar to
ours, and have essentially identical VAC.

More generally, the proportion of correct
responses predicted by Wixted’s (1989) model
is given by reinforcer proportions for correct
matching responses weighted by p, the discrim-
inative strength of the sample, plus reinforcer
proportions that are independent of choice of
comparison weighted by (1-p). Thus, as p
decreases and accuracy decreases concomitant-
ly, sensitivity to differential reinforcement in-
creases. In this respect, Wixted’s model is quite
similar to ours as summarized in Figure 5, which
shows how predicted response probabilities
depend on the proportions of trials on which
different effective reinforcer proportions are
operative, which in turn depend on p(As) and
p(Ac). Moreover, Wixted’s p is derived from
delay reduction theory, whereas in our model,
p(As) and p(Ac) are derived from behavioral
momentum theory. Thus, both models are built
on functional relations developed in other
domains and adapted to model DMTS perfor-
mance. The major difference between Wixted’s
and our general approaches is that his model’s
predictions are based on proportions of re-
inforcers and therefore must be independent of
the overall probability or rate of reinforcement
(as in Davison & Nevin’s, 1999, model), whereas
the present model’s predictions are based on
absolute reinforcer rates relative to their context
and therefore account naturally for the effects
of different reinforcer probabilities or rates.

White and Wixted (1999) proposed an
utterly different model of DMTS performance
that derives from signal-detection theory in
spirit but not in detail. The model assumes
that during the retention interval, the sample
stimuli are represented as normal distributions
on a hypothetical effect axis, and that the
distributions overlap to a greater extent as the
retention interval lengthens. It also assumes
that the height of each distribution depends
on the probability of reinforcement for correct
responses for each sample. Finally, it assumes
that the choice of comparison depends di-
rectly on the ratio of the ordinate values of the
distributions at a point sampled at random
along the effect axis (likelihood ratio). The
model predicts the relations between log d, log

b, and the parameters of the sample distribu-
tions; it cannot predict forgetting functions
without making assumptions about the ways in
which the sample distributions change in time.
In more general terms, White and Wixted have
advanced a structural model that generates
relations among dependent variables but does
not specify their relations to independent
variables. In particular, it predicts that sensi-
tivity to differential reinforcement increases as
the overlap of sample distributions increases,
so that sensitivity and accuracy must be
negatively related. As noted above, the same
negative relation also follows from Wixted’s
(1989) model, from Davison and Nevin’s
(1999) model, and from the present model if
ds is large and if v in Equation 4 is 0, which
implies constant orienting, observing, or at-
tending to the comparisons during the re-
tention interval regardless of its length (see
Figure 8). The predictive convergence of these
very different models is remarkable.

In order to address findings of decreasing
sensitivity to reinforcement with increases in
the retention interval (and hence positive
relations between sensitivity and accuracy),
White and Wixted (1999) varied the ITI and
showed that the negative relation between
sensitivity and accuracy could be eliminated or
reversed when the ITI was very short, so that
the accuracy of discrimination was low. As
shown in Figure 8, our model can mimic this
result by increasing the values of x and z. More
generally, our model can predict either posi-
tive or negative relations by varying the level of
attending to the comparisons during the
retention interval. Evidently, the inclusion of
variables that affect attending to the compar-
isons is the critical difference between the
present model and its predecessors. As a theo-
retical exercise, it would be interesting to
introduce variations in the role of the com-
parison stimuli into other models. But it would
be far more interesting to explore ways of
modulating stimulus control by the compar-
isons in the laboratory.

Wright and Sands (1981) devised a method
for evaluating attending to the comparisons in
DMTS with wavelength stimuli by presenting
them on surfaces behind the pecking keys so
that their subjects could see only one at a time.
In training, the comparisons were the same
wavelengths as the samples. In test trials,
different wavelengths served as comparisons.

ATTENDING, REMEMBERING, AND REINFORCEMENT 315



The pigeons almost always observed the com-
parison presented behind one side key. They
then either pecked that key, suggesting that its
wavelength met a subjective criterion for
‘‘matching,’’ or switched and observed the other
comparison, sometimes switching back and
forth several times within a trial before pecking
a key. Clearly, this behavior is an overt equivalent
of ‘‘attending to the comparisons’’ in our
model, and the probability of pecking the first-
observed key regardless of its wavelength could
provide an inverse measure of p(Ac). Wright and
Sands modeled their pigeons’ patterns of
observing by assuming that the comparisons
were represented by normal distributions on
a hypothetical continuum of wavelength effect,
similar to that proposed by White and Wixted
(1999) for the samples, and that the pigeons
either pecked or switched depending on wheth-
er a particular observation fell to one side or the
other of a criterion. The resulting probabilities
were entered into a Markov model which
predicted overall patterns of switching in re-
lation to wavelength differences. The data were
in close agreement with prediction. In effect, the
distributions in the model of Wright and Sands
play a role similar to dc in our model, and the
location of the criterion for pecking or switching
in their model might be related to the probabil-
ity of reinforcement in our model: Specifically,
decreasing the reinforcer probability might
make the criterion for accepting the first-
observed comparison as a match more lenient,
with a concomitant decrease in accuracy. It
would be of great interest to explore the effects
of reinforcer probability in a version of their
paradigm that permits measurement of observ-
ing or attending to both samples and compar-
isons in DMTS trials.

At the outset of this article, we suggested that
in order for a subject to perform correctly and
obtain reinforcers in conditional discrimina-
tion tasks, it must attend to both the condition-
al and choice cues. Our model makes that dual
requirement explicit, and suggests that re-
inforcement determines attending in the same
way as overt free-operant responding.
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